1.....3.......3.........1(請忽略省略號,不加的話起點會自動縮排,暈了)
.......
徐雲一共畫了八行,每行的最外頭兩個數字都是1,組成了一個等邊三角形。
熟悉這個影象的朋友應該知道,這便是赫赫有名的楊輝三角,也叫帕斯卡三角——在國際數學界,後者的接受度要更高一些。
但實際上,楊輝發現這個三角形的年份要比帕斯卡早上四百多年:
楊輝是南宋生人,他在1261年《詳解九章演算法》中,儲存了一張寶貴圖形——“開方作法本源”圖,也是現存最古老的一張有跡可循的三角圖。
不過由於某些眾所周知的原因,帕斯卡三角的傳播度要廣很多,一些人甚至根本不認楊輝三角的這個名字。
因此縱有楊輝的原筆記錄,這個數學三角形依舊被叫做了帕斯卡三角。
但值得一提的是......
帕斯卡研究這幅三角圖的時間是1654年,正式公佈的時間是1665年11月下旬,離現在.....
還有整整一個月!
這也是徐云為什麼會從色散現象入手的原因:
色散現象是很典型的微分模型,甚至要比萬有引力還經典,無論是偏折角度還是其本身的“七合一”表象,都直接的指向了微積分工具。
1/7這個概念,更是直接與指數的分數表態掛上了鉤。
接觸到色散現象的小牛要是不想到自己正一籌莫展的‘流數術’,那他真可以洗洗睡了。
小牛見到色散現象——小牛產生好奇——小牛測算資料——小牛想到流數術——徐雲引出楊輝三角。
這是一個完美的邏輯遞進的陷阱,一個從物理到數學的局。
至於徐雲畫出這幅圖的理由很簡單:
楊輝三角,是每個數學從業者心中拔不開的一根刺!
楊輝三角本來就是咱們老祖宗先發明並且有確鑿證據的數學工具,憑啥因為近代憋屈的原因被迫掛在別人的名下?
原本的時空他管不著也沒能力去管,但在這個時間點裡,徐雲不會讓楊輝三角與帕斯卡共享其名!
有牛老爺子做擔保,楊輝三角就是楊輝三角。
一個只屬於華夏的名詞!
隨後徐雲心中撥出一口濁氣,繼續動筆在上面畫了幾條線:
“艾薩克先生,您看,這個三角的兩條斜邊都是由數字1組成的,而其餘的數都等於它肩上的兩個數相加。
從圖形上說明的任一數C(n,r,都等於它肩上的兩數C(n1,r1及C(n1,r之和。”
說著徐雲在紙上寫下了一個公式:
C(n,r=C(n1,r1+C(n1,r(n=1,2,3,···n)
以及......
(a + b^2= a^2 + 2ab + b^2
 a + b^3 = a^3 + 3a^2b + 3ab^2 + b^3
 a + b^4 = a^4 + 4a^3b + 6a^2b^2 + 6ab^3 + b^4
 a + b^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5