例如後世還定義出了另一個相關概念,叫做真空衰變。
它的內容是這樣的:
宇宙萬物都會自發地趨向於能量最低的狀態,類似於水往低處流。
所以如果宇宙真空並不是處於能量最低狀態,那麼在一定的條件下,宇宙真空就會向更低的能量狀態“跌落”。
假設宇宙真空並沒有處於能量最低的狀態,那麼我們就可以將其稱為“偽真空”。
與之對應的是處於能量最低狀態的宇宙真空,則可以稱為“真實的真空”。
舉個例子。
一座山的半山腰有一顆鐵球。
儘管它存在著繼續往下掉的趨勢,但由於在半山腰的位置上存在著一種地勢的阻擋,它就不會繼續往下掉。
但假如你用一定的力量推動這個鐵球越過阻擋它的地勢,它就會不可避免地繼續往下掉。
同樣的道理。
如果向偽真空裡注入足夠大的能量。
那麼偽真空就可以突破能量勢壘,進而向真實的真空跌落,於是真空衰變就發生了。
要知道。
真空衰變釋放出的能量其實是非常非常龐大的,大到足以令其周圍的偽真空也突破能量勢壘。
在這種情況下。
如果宇宙中的某一區域發生了真空衰變,那麼其釋放出的能量就會引發周圍的空間發生真空衰變。
而周圍的空間發生了真空衰變,又會引發更多的空間也發生真空衰變,無限套娃.
最終這就會形成了一種不可阻止的連鎖反應,其造成的效果就是一個由“真實的真空”構成的球體空間在宇宙中急劇膨脹。
而從理論上來講。
這個球體空間的膨脹速度,其實就是光速。
同時這個球體空間的“表面”充斥著巨大能量的緣故。
因此在其所過之處,宇宙中的眾多天體都會分崩離析,並且物理常數都會發生巨大變化。
看到這裡。
是不是有同學感覺這種描述有些熟悉?
是不是感覺黑洞和這很像?
很可惜,你們熟悉的早了——黑洞其實並不是真空衰變的模型。
但是
某釣魚佬下本書的大結局卻和真空衰變有關係.(沒錯,我下本書的大結局都想好了,算是一個跨越一本書的彩蛋吧,矯情一下,希望下本書大結局的時候還能看到你們)
好了。
視線再回歸現實。
而除了真空之外。
另一個簡併的概念相對就簡單一些了。
一個厄密算符的本徵值有多個本徵態,這就是簡併。
比如上頭提到的氫原子軌道,就有角動量和自旋這兩個簡併。
再舉個例子。
看過網路的同學應該都知道。
一個網路作家的筆名下可能有好幾本書。
這幾本書雖然成績啊字數啊內容啊都不一樣,但它們都是同一個作者創作在同一個網站上的,這幾本書就是筆名的簡併。