徐達和朱元璋下了盤棋,在戰勝朱元璋的前提下,徐達用棋子在棋盤上擺出“萬歲”二字,請問這個事件出現的機率是多少?並說明原因。
中國數學會這群人出題,挑戰的是考生的底線。
MMP做個數學題還得懂圍棋規則,就問你氣不氣,這種題目也就中國學生有可能解出來,歪果仁看完之後會流淚。
這就是國決,全中國難度最高的高中數學賽場。
如果有選手對圍棋一竅不通,那就悲催了,沒點特長你好意思參加數學國決?
沈奇會下圍棋象棋飛行棋鬥獸棋,拋開棋藝不談,規則他是清楚的。
而且沈奇知道,其他國決選手有不少懂得各種棋類規則,還玩的挺好,比如說鄂北省數競隊那群選手,他們能閉著眼睛下盲棋。
“透過現象看本質,這題的本質跟朱元璋、徐達無關,它就是一道數學題而已,除了最後一句話問機率和這張棋譜,前面的典故都是幌子。”
沈奇很快就聯想到了費馬和帕斯卡關於賭金分配的理論,從某種意義上來說,下棋也是一種賭博,天橋底下長期有人靠此為生。
既然是賭博,就必不可少要運用到機率論和數論的相關專業知識。
甭管“萬歲”二字是怎樣倒騰出來的,它只不過是一個機率事件,是懂數學之人的小把戲。如果朱元璋懂數學,他立馬就會治徐達的罪,還賞賜個毛線的莫愁湖。
費馬和帕斯卡聯合起草的賭金分配論及後續衍生的相關理論,是全世界各大賭場長賺不賠的理論依據,計算出“萬歲”二字的機率,和計算出兩個王四個二剩下一手順子的理論原則類似。
沈奇動筆寫到:設黑子為p,設白子為q,若p是出現單獨一次事件的機率,則q是該事件不出現的機率。
&n次的機率,等於(p+q的n次方展開式中,從p的n次項到包括p的m次專案乘以q的(nm)次項為止的各項之和。
……
依據這個理論,沈奇很快算出了“萬歲”二字出現的機率,僅為萬分之零點二,並詳細論述了原因。
算機率不難,你掌握了上面的數學原理,你也能成為賭王,難的是四肢健全活著走出賭場。
沈奇推斷,朱元璋和徐達下棋是真的,但徐達擺出“萬歲”二字贏得莫愁湖,極有可能就是個傳說而已。
從數學角度解釋,下五萬盤棋才能出現一次“萬歲”,一盤棋短則幾十分鐘,長則幾個小時,一天能下個三五盤棋算多的了。
朱元璋和徐達每天不幹別的,就下棋,得下27年才能見到一次黑白子擺出的“萬歲”。
朱元璋可是開國皇帝,他不用處理國事了?
當然了,“萬歲”事件隨機出現在五萬次中的第一次,也是有可能的。
所以這就是個傳說,不能當真。
“這個第一題呀,初看很蛋疼,做完之後蛋蛋就不疼了,甚至還有一點抖動的快感,這題其實還蠻有趣的。哎呀我都沒去過莫愁湖,好想去看看。”沈奇吃條士力架,慶祝自己成功破解國決首題。
馬不停蹄的,沈奇進入第二題的解答,這題是平面解析幾何題。